

統計的機械学習の基礎と ガラス材料探索への応用

滋賀大学 教育学部 徳田陽明

https://glass1.net

これまでの研究の概略

・ガラス材料の高機能化

量子化学計算

固体NMR

・震災復興支援

特殊水を用いた除染

・新規な材料の創成

自己組織化

・機械学習

マクロ

イオン伝導性の解明

原子集団の中距離構造の理解

構造解析と電子状態の理解

$$H\psi = E\Psi$$

https://www.nihonkiin.or.jp/publishing/go_world/ goworld_201605.html

アルファ碁ゼロは、AI同士の対戦で学習し、プロ棋士に勝利

Applied Physics Express 10, 065502 (2017)

https://doi.org/10.7567/APEX.10.065502

Rapid prediction of molecule arrangements on metal surfaces via Bayesian optimization

Daniel M. Packwood^{1,2} and Taro Hitosugi³

- GAFAによる実装
- データ量の増加
 - インターネット利用(画像など)の拡大
 - 実験データの蓄積
- コンピュータの性能の向上
 - ゲーム機が昔のスパコン並みの能力
- 解析アルゴリズムの充実
 - 統計計算,行列計算のパッケージ化

自動化、自動認識などのニーズに見合うだけの性能を達成可能

化学分野の現況

マクロ

- 凝縮系(固体)
 - 周期性を利用した電子状態の予測(データベース化)特徴量の抽出
- ・ 凝縮系(液体を含む)
 - 機械学習による原子間ポテンシャルの利用

大量のデータを使って、もっと簡単に物性予測できないか

機械学習の基本的な考え方

 機械(コンピュータ)がデータを用いて自動で学習し、その データの背後にあるルールを発見すること。

なんとなく難しそう・・・

この点線を予想するのが機械学習(の一つ)

学習:与えられた入力xと出力yに合うように関数の形を変えること

標準偏差:0.3639

標準偏差:0.1084

- パラメータの数に依存
- パラメータが多すぎると,合いすぎる(過学習)

どのようなモデルを用いるか どれだけデータを集められるか

ChatGPTについて

- 現時点で詳細は非公開
- 「非常に多くの」情報(数十Tb)をインターネットで取得し,自動的に学習
- 用いられたパラメータは2000億個
- ある語の次に来る確率の高い語をつなげて表示

例:「富士山」という単語が出ると,次に「は」,そ の次に「日本」・・・が来ると予測し,最終的に「富 士山は日本で一番高い山です」という文章を生成する

• 巨大な空間での「内挿」を行なっている。

- 大きなデータが入手できるので,実用的になった
- データの無いもの、少ないものには非カ=何でもできるわけではない
 - 固有名詞に関する情報など

*正解が明確な場合には無から有を作れる。その例が囲碁

「人類」の作ったものを超えることはありえない(個人を超えることは起きている)

何ができると嬉しいか

- 物性から組成を予測(逆問題)
- 複数物性を同時に予測(組成の提案)
- 工場ラインでの異常検知
- 因果関係の推論

物性から組成を予測

逆問題を解きたい

逆問題とは?

ある性質yが材料の合成条件xで決まるとする。

y = f(x)

例:結晶の組成xと物性yなど

順問題とは? xからyを見つける
逆問題とは? yを示すxを見つける

- 融点550°C(y)を示す結晶の組成(x)を知りたい
- 超伝導のチャンピオンデータ(y)を示す結晶(x)を見つけたい

これらはまさに材料開発でやっていること & 簡単にできたら研究で苦労しない・・・

逆問題を直接解くのではなく, 既存のデータか ら探すことはできないだろうか

ベイズ最適化

目的:x=2.5の時のyの値を推定したい

データ点が増えれば増えるほど、予測しやすくなる

ガウス過程回帰では点同士の共分散を定義して予測できる

・実測点→無限個の関数φの和を推定

特徴 ・予測の不確かさも一緒に推定可能 ・過学習が起きづらい

ベイズ最適化

入力から出力を予測する回帰関数の確率モデル

データの少ない場所 →自信のない出力(不確かさが大きい)

計算方法(省略)

ベクトルや微分積分を使います 表計算ソフトでも計算できます

難しそうだけど、これだけで予測できるのは凄い!

ベイズ最適化

- データによる予測と実験の組み合わせの繰り返し
 探索回数の減少
- 最大値(最小値)をみつける方法
- 材料開発以外でも,様々な応用が可能

(Tokuda and Fujisawa et al., AIP Advances 2020)

ガラスとは

光ファイバ

Make / PIXTA

アンプル

panoramaimages / PIXTA

シェフィールド大聖堂 (イギリス)

> 特徴 ・組成が連続的 ・多くの元素を取り込む溶媒

ガラスの作製

- 結晶
 - 規則正しい
 - 固体

- ガラス
 - ばらばら
 - 固体(液体に似ている)

ガラスの物性値を予測できれば, 用途に合わせたガラス作製が可能

ガラス修理365 内視鏡に使われる光ファイ バーとガラスの関係 より引用 okwindow.jp/infomation/endoscope_glass/

ガラスの光学特性

光学ガラス 屈折率や分散は組成に依存

▶ 組成とアッベ数の関係の予測モデル

- 国内外の論文,特許全てのガラス情報を掲載
- 38万種ガラス,100万個の物性データ

ガラス番号	SiO ₂	B_2O_3	AI_2O_3	•••	MoO ₂	屈折率	アッベ数
1	2.8	3.5	0	•••	0	1.9967	26.2
2	4.86	19.36	5.6	•••	0	1.9995	28.6
:	:	•	:	•	:	•	:
878	0.5	4.6	0.2	•••	0	1.9567	29.9
879	20.1	5.6	2.4	•••	0	1.9435	27.6

- ・ベイズ最適化をRで実装
- ・EIの値を基に次に探索すべき実験条件(Pbを含ま ない)を決定

成分	物質量比 (mol%)	成分	物質量比 (mol%)	尼	
SiO ₂	17.77	ZnO	4.4	5	P
B_2O_3	21.39	SrO	7.99		30
CaO	9.08	Bi ₂ O ₃	4.23		
BaO	7.3	TeO ₂	1.05		/
Li ₂ O	26.79	La_2O_3	5	8	

成分	物質量比 (mol%)	成分	物質量比 (mol%)	屈折率 1.6824
SiO ₂	15.77	ZnO	3.91	アッベ数
B_2O_3	18.98	SrO	7.87	38.3
CaO	13.44	Bi ₂ O ₃	3.75	
BaO	5.39	TeO ₂	0.93	
Li ₂ O	29.96	Na ₂ O	5	

成分	物質量比 (mol%)	成分	物質量 比 (mol%)
La ₂ O ₃	26.4	Al_2O_3	0.1
Nb_2O_5	2.43	SiO ₂	10.87
Ta ₂ O ₅	11.07	Sb ₂ O ₃	0.10
B_2O_3	25.83	Gd_2O_3	11.36
ZrO ₂	6.99	TiO ₂	4.8

・誰でも("簡単に"とは言わないが)挑戦できる

複数物性の同時予測

組成も提案したい

(Tokuda and Fujisawa et al., AIP Advances 2021)

ものづくりには色々な制約条件がある・・

複数の制約条件を満たすものを作りたい!

複数の物性を同時に予測

• 脳機能の特性のいくつかをコンピュータ上で表現するために作られた数学モデル

ディープラーニング

(Tokuda and Fujisawa et al., AIP Advances 2021)

• 脳機能の特性のいくつかをコンピュータ上で表現するために作られた数学モデル

*u*がO以上:必要*u*がO以下:不要

精度が向上しやすい

計算式がシンプルなので,処理が速く,

予測可能

高い学習効率

• 脳機能の特性のいくつかをコンピュータ上で表現するために作られた数学モデル

解析結果(3物性同時予測)

Te:熱膨張係数 Ts:軟化点 Tg:ガラス転移温度

中間層が(100,100,100,100,100,100)かつa
 =0.0001の時に、最適化した(R²=0.83)

	実証結果						
 Bi₂O₃を5%添加して作製した試料を測定したところ、Teは同程度の値を示し、Tsは10度程下がり、Tgは40度程下がった 							
	表 試料 とBi添加した試料の実測値						
		物性値	試料1	Bi ₂ O ₃ 添加			
		Te(ppm/K)	4.94	5.62			
		Ts(°C)	586	578			
		Tg(°C)	510	473			

予測した通りTeの値が同程度でTsとTgの値が小さい

データ活用と材料開発

- データ活用は強力な手法
- データ活用して材料開発を加速できる時代
 大量のデータを入手可能(データの質が重要)
 パソコンの性能向上
 パッケージ化された開発ツール(少々の勉強は必要)
- データ活用が全てではないことに注意
 共存の時代

まとめ(MLを利用する立場から)

原理原則に基づく理解

$$\left\{-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(r)\right\} \Psi(r) = E\Psi(r)$$

経験(データ)に基づく理解

