



# 機械学習を用いた ガラス材料の光学特性の設計

滋賀大学 教育学系 徳田陽明 tokuda@edu.shiga-u.ac.jp https://glass1.net





## 機械学習と材料開発



AIが囲碁のトップ棋士に勝った!





https://www.nihonkiin.or.jp/publishing/go\_world/ goworld\_201605.html

アルファ碁ゼロは、AI同士の対戦で学習し、プロ棋士に勝利





- GAFAによる実装
- データ量の増加

   インターネット利用(画像など)の拡大
   実験データの蓄積
- コンピュータの性能の向上
  - ゲーム機が昔のスパコン並みの能力
- 解析アルゴリズムの充実
  - 統計計算,行列計算のパッケージ化











機械学習とは、ある目的のためにデータを基にしてコンピュータ (機械)を用いて関係性を発見(学習)すること。そして、これを 用いて、未知のデータを予測すること。

アルファ碁:強い碁アルゴリズムを作るために, 過去の対局から着 手の評価関数を作成した。そして, ある局面での最善手 を見出した。

顔認識:顔を認識するために, ネット上の画像データを処理し, 顔に 特有の特徴を発見した。そして, ある写真が顔かどうかの判 定を行なった。









"機械":入力xに対して出力yを与えるもの(関数)











#### "学習": 与えられた入力xと出力yに合うように機械 (関数)の形を変えること



2つの事物の結ぶ"機械"の形を, 新たなデータに合わせて変えていく



機械学習でできること



#### 回帰

- 最小二乗法によるフィッティング
- 重回帰分析
- カーネル多変量解析



- <mark>分類</mark> – 数字の判別
- クラスタリング – グループ分け
- パターンの発見

何らかの関係が発見できた し 数式で表現できるはず |評価値 – 予想値| → 最小  $A_1 > A_2 > \cdots > A_k$ 数学やアルゴリズムで実装可能!



#### 6点のデータを6次式で近似すると、データに合いすぎる

過学習を防ぐために正則化項が加えられる

















# 高屈折率・低分散ガラス の材料探索



工芸品としてのガラス





シェフィールド大聖堂(イギリス)



白瑠璃碗(正倉院)









#### 液晶ディスプレイ

光ファイバ



https://www.sony.jp/

http://www.sei.co.jp



2022年は国際ガラス年です









- ・コスト
  - 原料
  - 溶融温度
- 環境負荷
- 耐久性
  - 機械的
  - 化学的

様々な制約の下,開発する必要 がある







光学ガラス 屈折率や分散は組成に依存





組成と屈折率orアッベ数の関係の予測 機械学習の手法に基づく回帰モデルの推定





# カーネルリッジ回帰を用いた 材料物性予測ならびに探索





#### ・実測点→無限個の関数の和を推定

・各関数を求める必要なし→「カーネル」さえ定義できれば良い









アッベ数  

$$\mu = f(x)$$
 ガラスの組成からアッベ数を予測するモデル







## 母ガラス・添加成分の決定 屈折率1.8~2.0のガラスのデータを抽出 (データはIntergladのものを使用)



仮にφ<sub>n</sub>(x)と書けるものとする



## 共分散K K = E[yy<sup>T</sup>] – E[y]E[y]<sup>T</sup> = $\Phi$ E[ww<sup>T</sup>] $\Phi$ <sup>T</sup>

=  $\lambda^2 \Phi \Phi^T$ 行列の要素をカーネル関数で表現

$$\mathbf{K} = \lambda^2 \Phi \Phi^{\mathrm{T}} = \begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{bmatrix}$$

カーネル関数を決めることは、φ<sub>n</sub>(x)を決めたことに等しい



カーネル関数 
$$k(x_i, x_j) = \boldsymbol{\theta}_1 \exp\left(-\frac{|x_i - x_j|^2}{\boldsymbol{\theta}_2}\right)$$

➡ 2点のデータxとx'の類似度を表現

 $\mu_i = \Sigma_i \alpha_i k(x_i, x')$  連立方程式を解くと αが得られる

実際には正則化項を加える

既知のデータからαを決定できる













## $\mu_{new} = \alpha_1 k(x_1, x_{new}) + \alpha_2 k(x_2, x_{new}) + \cdots$ アッベ数 組成

## 各成分を5%加えた時のアッベ数を予測 →**予測値**µの値の大きいもの







## ①母ガラス・添加成分の決定

屈折率 
$$n_d = 1.9995$$
 アッベ数 $v_d = 28.6$ 

| 成分                             | 組成比<br>(mol%) | 成分                             | 組成比<br>(mol%) |
|--------------------------------|---------------|--------------------------------|---------------|
| $La_2O_3$                      | 21.18         | ZrO₂                           | 9.65          |
| $Nb_2O_5$                      | 16.94         | $Al_2O_3$                      | 5.6           |
| Ta <sub>2</sub> O <sub>3</sub> | 4.23          | TiO <sub>2</sub>               | 4.83          |
| GeO <sub>2</sub>               | 13.29         | SiO2                           | 4.86          |
| $B_2O_3$                       | 19.36         | Sb <sub>2</sub> O <sub>3</sub> | 0.06          |



## ガラスの作製と評価









添加成分の決定



ガウス過程回帰による 予測結果

40 35 アッベ数の実測値 30 25 പ്പ 25 30 35 40 アッベ数の予測値 正確に予測可能

添加成分の候補(256成分) Yb<sub>2</sub>O<sub>3</sub>, La<sub>2</sub>O<sub>3</sub>, SrO, Ta<sub>2</sub>O<sub>5</sub>, Nb<sub>2</sub>O<sub>5</sub>

| サンプル                              | 順位 | 屈折率    | アッベ数 |
|-----------------------------------|----|--------|------|
| 添加なし                              | -  | 1.9978 | 26.2 |
| La <sub>2</sub> O <sub>3</sub> 5% | 4  | 1.9983 | 29.4 |
| SrO 5%                            | 12 | 1.9878 | 27.0 |
| Ta <sub>2</sub> O <sub>5</sub> 5% | 54 | 2.0237 | 25.7 |
| Nb <sub>2</sub> O <sub>5</sub> 5% | 56 | 2.0170 | 24.3 |

La<sub>2</sub>O<sub>3</sub>はアッベ数が大きく増加 Nb<sub>2</sub>O<sub>5</sub>, Ta<sub>2</sub>O<sub>5</sub>に増加なし







# Intergladから抽出したビッグデータの機械学習によってガラス組成探索を行った。その結果、屈折率の値は変化せずに、分散のみを小さくする添加成分を見出した。

ガラス材料探索における機械学習の有効性の実証





# ディープラーニングを用いた 材料物性予測ならびに探索



• 脳機能の特性のいくつかをコンピュータ上で表現するために作られた数学モデル

#### 思考のプロセス



ディープラーニングで、2つ以上の物性値を予測することが可能



■多層パーセプトロン:単純パーセプトロンを組み合わせたモデル















- DLの予測精度(R<sup>2</sup>)を高めるため、中間層の数とalpha (α)
   の値を変えて、予測を行った
  - 中間層はニューロンと層の数によって決定される
  - αはDLの過学習を防ぎ、ネットワークの自由度を抑えることができ









(Tokuda and Ogawa et al., AIP Advances 2021)



DLでアッベ数を予測したデータ

実験値との良い一致



添加成分とアッベ数の増減



・ 母ガラスに対し、それぞれ3%添加

| 0 | 添加成分                           | アッベ数        |
|---|--------------------------------|-------------|
|   | Ga <sub>2</sub> O <sub>3</sub> | /J\         |
| 0 | GeO <sub>2</sub>               | 大           |
|   | Y <sub>2</sub> O <sub>3</sub>  | 大           |
|   | Sc <sub>2</sub> O <sub>3</sub> | <u>ا</u> ر، |
|   | TiO <sub>2</sub>               | 変化せず        |
|   | TeO <sub>2</sub>               | <u>ا</u> ر، |
|   | Yb <sub>2</sub> O <sub>3</sub> | 大           |
|   | La <sub>2</sub> O <sub>3</sub> | 大           |
|   |                                |             |



La<sub>2</sub>O<sub>3</sub>を添加したガラスサンプル















INTERGLADから母ガラスを決め、低分散化への寄与率が高い成分を機械学習で予測し、新規材料を合成した。

- ・GPRとDLの予測性能が高いことがわかった。
- •La<sub>2</sub>O<sub>3</sub>の低分散化への寄与が大きいことがわかった。









原理原則に基づく理解

$$\left\{-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(r)\right\} \Psi(r) = E\Psi(r)$$



経験(データ)に基づく理解



特徴量